# POZNAN UNIVERSITY OF TECHNOLOGY



EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

## **COURSE DESCRIPTION CARD - SYLLABUS**

Course name

Industrial automation systems [S2Eltech2-UEPP>UAP]

| Course                                                                     |                        |                                   |                          |
|----------------------------------------------------------------------------|------------------------|-----------------------------------|--------------------------|
| Field of study<br>Electrical Engineering                                   |                        | Year/Semester<br>2/3              |                          |
| Area of study (specialization)<br>Electrical Systems in Industry and       | Vehicles               | Profile of study general academic | c                        |
| Level of study<br>second-cycle                                             |                        | Course offered in<br>Polish       |                          |
| Form of study<br>full-time                                                 |                        | Requirements compulsory           |                          |
| Number of hours                                                            |                        |                                   |                          |
| Lecture<br>15                                                              | Laboratory class<br>15 | es                                | Other (e.g. online)<br>0 |
| Tutorials<br>0                                                             | Projects/seminal<br>0  | ſS                                |                          |
| Number of credit points 2,00                                               |                        |                                   |                          |
| Coordinators<br>dr inż. Krzysztof Budnik<br>krzysztof.budnik@put.poznan.pl |                        | Lecturers                         |                          |

#### **Prerequisites**

Has in-depth knowledge of the construction and design of electrical systems, in particular measurement and control systems, knows basic information about PLCs and microcontrollers.

#### **Course objective**

Provide students with basic knowledge of programming and application of programmable controllers for industrial process control.

#### **Course-related learning outcomes**

#### Knowledge:

Has in-depth knowledge of the construction and design of complex electrical systems, in particular measurement and control systems, knows the basic processes occurring in the life cycle of technical systems.

Skills:

Can - when formulating and solving unusual engineering tasks and simple research problems - use a system approach, take into account non-technical aspects, use information and communication

methods and tools.

Social competences:

Recognizes the importance of knowledge in solving cognitive and practical problems and understands that in technology, knowledge and skills quickly become obsolete and therefore require constant replenishment.

## Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture:

- assessment of the knowledge and skills shown in the problem-based written test, carried out during the last lecture (90 min.).

Laboratory:

- checking and awarding the knowledge necessary to implement the problems posed in a given area of laboratory tasks,

- evaluation of the implemented project; Project topics are distributed to students during 4 laboratory classes; Projects are carried out in groups of 2-3 people; The project concerns writing the control of a selected process or part of a technological process.

## Programme content

The use of automatic control systems in industry.

## **Course topics**

Lecture:

Introduction to control issues: the concept of control, implementation of digital control of industrial processes, control system with a programmable controller, implementation of the control algorithm, input measurement and status signals, output control signals, classifications of programmable controllers. Construction and operation of the controller and programmer. Programming languages: ladder (LD), structured (ST), instruction lists (IL), function blocks (FBD), sequential programming (SFC). Application of digital regulators.

Laboratory:

- familiarization with dedicated laboratory sets containing a PLC controller,

- overview of programming tools,

- creating a project, hardware configuration, writing an elementary program in the selected programming language, testing the program, archiving the project,
- use of basic logic operations, timers, comparators, flip-flops, use of DI, DO, AI, AO,
- selection of sensors and measuring transducers,
- use of PID controllers,
- design of the control of a selected technological process in industry.

## **Teaching methods**

Lecture:

Multimedia presentation, presentation illustrated with examples given on the board. Laboratory:

Introduction to the task, programming the task and its verification with the use of dedicated laboratory sets and software, testing the results of the program.

## Bibliography

Basic:

1. Kasprzyk J., Programowanie sterowników przemysłowych., WNT, Warszawa, 2006.

2. Gilewski T, Szkoła programisty PLC : sterowniki przemysłowe, Wydawnictwo Helion, Gliwice, cop. 2017, ISBN: 978-83-283-3082-5.

3. SIMATIC, Programming with STEP7, Manual, Wydanie 5/2010, Siemens A.G.

4. Ladder Logic (LAD) for S7-300 and S7-400 Programming, Reference Manual, 6ES7810-4CA10-8BW1, 05.2010, Siemens A.G.

#### Additional:

1. Simatic S7 Programowalny sterownik S7-1200, Podręcznik systemu, Wydanie 4/2009, Siemens A. G.

2. J. Kwaśniewski. Programowalny sterownik SIMATIC S7-300 w praktyce inżynierskiej, Wydawnictwo BTC, Legionowo 2009.

3. J. Kwaśniewski, Sterowaniki PLC w praktyce inżynierskiej, Wydawnictwo BTC, Legionowo 2008.

4. J. Kwaśniewski. Programowalne sterowniki przemysłowe w systemach sterowania, Wydawnictwo Katedra Automatyzacji Procesów AGH, Kraków 1999.

#### Breakdown of average student's workload

|                                                                                                                                            | Hours | ECTS |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| Total workload                                                                                                                             | 55    | 2,00 |
| Classes requiring direct contact with the teacher                                                                                          | 30    | 1,00 |
| Student's own work (literature studies, preparation for laboratory classes/<br>tutorials, preparation for tests/exam, project preparation) | 25    | 1,00 |